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We expand the fluctuating flow variables of Boussinesq convection in the 
planform functions of linear theory. Our proposal is to consider a drastic trunca- 
tion of this expansion as a possibly useful approximation scheme for studying 
cellular convection. With just one term included, we obtain a fairly simple set of 
equations which reproduces some of the qualitative properties of cellular con- 
vection and whose steady-state form has already been derived by Roberts 
(1966). This set of ‘modal equations’ is analysed a t  slightly supercritical and at 
very high Rayleigh numbers. I n  the latter regime the Nusselt number varies with 
Rayleigh number just as in the mean-field approximation with one horizontal 
scale when the boundaries are rigid. However, the Nusselt number now depends 
also on the Prandtl number in a way that seems compatible with experiment. 
The chief difficulty with the approach is the absence of a deductive scheme for 
deciding which planforms should be retained in the truncated expansion. 

1. Introduction 
When thermal convection occurs in Nature, it  is usually characterized by 

exceedingly large values of the Rayleigh number. For such circumstances, there 
are no generally accepted theoretical treatments, though mixing-length theory 
in one of its various forms is often used. This may be adequate when, as is often 
true, it  is required to calculate mean quantities or to estimate transports. On the 
other hand, the drawbacks are evident; in particular, mixing-length theory 
cannot cope easily, if at all, with the various important complications that oecur 
naturally, such as variable density, penetration and rotation. It would therefore 
be helpful to develop an approximation for convection which works moderately 
well for laboratory conditions and which, without special new assumptions, is 
adaptable to convection in natural circumstances. It is the aim of this paper to 
outline an attempt in this direction. 

The approach taken here is motivated partially by observations of solar 
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convection. There, in spite of the large Rayleigh number ( N 1O2O), one observes 
motion which appears cellular. Of course, the supposed cells might be the tops of 
thermals, or any of a variety of other possible alternatives. Nevertheless there is 
a certain cogency to the interpretation that cell-like motion persists in what is 
probably an intensely turbulent flow. 

Further impetus for our approach comes from solutions of the equations of 
motion with the terms nonlinear in fluctuating quantities omitted: the so-called 
mean-field equations. The original reasons for considering these equations at all 
are vague and go back to some work of Malkus (see, for example, Spiegel 1962; 
Herring 1963), as well as to mixing-length theory itself. Nonetheless, the solu- 
tions of these equations when only one horizontal scale of motion is included give 
horizontal means of quantities such as temperature which are in qualitative 
agreement with laboratory results, even at  moderately high Rayleigh numbers. 
And when many horizontal wavenumbers are included, i t  appears that the 
qualitative nature of heat transfer in laboratory convection is reproduced, at 
least for large values of the Prandtl number (Chan 1971; Spiegel 1971). 

It seems reasonable to try to capitalize on the relative success of the mean- 
field equations by adding to them some approximation for the neglected non- 
linear terms. This should at  least help to remedy what appears to us to be one of 
their principal failures, namely that the heat transport they predict does not 
depend on the Prandtl number. This deficiency renders the mean-field equations 
unsuitable for use in stellar convection theory, for example. 

Attempts to add some representation of the missing nonlinear terms to the 
mean-field equations have already been made. One such attempt (Spiegel 1967), 
though rather ad hoc, produced a reasonably tractable set of equations; indeed, 
of a form similar to that which we devise here. A more systematic approach was 
taken by Roberts (1966), who applied the procedure of Glansdorff & Prigogine 
(1964) to the convection problem with a cellular trial function. His results are 
just the steady-state form of the leading approximation we shall treat in some 
detail here. 

The procedure we shall follow, though giving equations like those mentioned 
above, is rather simple, has been in use since Ptolemy and is sometimes called the 
Galerkin method. We shall simply make an expansion of the horizontal structure 
of the velocity and temperature fields in orthogonal functions and truncate it. 
Presumably, if enough terms are kept, one may regard this as a sensible approxi- 
mation procedure, and later we propose to develop it in this way. Here we shall 
study in detail the case where only one term is retained, and we prefer to think of 
the approximate equations so obtained as simply defining a mathematical model 
of a convection cell. 

In  § 2 we shall present the proposed expansion for Boussinesq convection and 
show that it is energetically consistent. From this expansion, however, we shall 
here retain only one term and study the resulting single-mode equations in some 
detail. In  $ 3  we shall examine how motion of small but finite amplitude is 
described by the truncated equations and compare the results with those from 
the full Navier-Stokes equations. Then in 94 we shall solve the single-mode 
equations for large values of the Rayleigh number using matched asymptotic 
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expansions. The results introduce a reasonable Prandtl number dependence into 
the heat transport predicted by the usual mean-field equations. 

2. Expansion of the Boussinesq equations 
We consider an incompressible fluid confined between two horizontal, rigid, 

perfectly conducting plates at fixed temperatures. The plate separation d is 
assumed to be sufficiently small that the Boussinesq approximation holds. We 
take d as the unit of length, d2/K as the unit of time, where K is the thermometric 
conductivity, and AT, the temperature difference between the plates, as the unit 
of temperature. As usual, we decompose the temperature into a mean and a 
fluctuating part: T = p + 8, where the overbar indicates a horizontal average. 
The non-dimensional equations of motion then become 

aelat+u.ve-u.ve = pw+v2e, (2.2) 

v.u = 0, (2.3) 

where p = - a5?laz, (2.5) 

and R = g a A T d 3 / m  and (T = V / K  are the Rayleigh and Prandtl numbers. Also g is 
the gravitational acceleration, cc is the coefficient of thermal expansion, v is the 
kinematic viscosity, f is a vertical unit vector, m is the deviation of the pressure 
from its hydrostatic value divided by the (constant) density, and (u, v, w) are the 
(x, y, z )  components of the velocity u with the z axis directed along f. The terms 
describing the basic hydrostatic balance of the mean state have already been 
subtracted from (2.1). 

In studying this system we may be interested in a variety of possible boundary 
conditions, but we shall restrict ourselves here to cases where the conductivities 
of the boundaries are far greater than that of the fluid; this permits us to regard 
the boundary temperatures as specified. If the upper and lower boundaries are 
rigid then we have - - 

I u=O, B = O ,  T = l  a t  z = O ,  

u=O, 8 = 0 ,  T = O  a t  z = 1 .  
- 

Though these are the conditions we shall use principally, we shall sometimes, for 
comparison with other work, apply the so-called free boundary conditions to the 
velocity fields, namely 

aulaz, avlaZ, w = o a t  z = 0, I. ( 2 . 6 ~ )  

Linear theory shows that instability can arise for R 2 R, = 1708 (Chandra- 
sekhar 1961, chap. 2) if conditions (2.6) apply. The linear equations are separable, 
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and the horizontal variations of w and 8 are described by the planforms f i(x,  y), 
which satisfy 

VVi(X’  Y) = -avi(x’ Y), (2-7) 

where 0: = a2/ay2 + a2/ay2 and the separation constant ai is a horizontal wave- 
number of the motion. Under the usual assumptions about the properties of 
horizontal averaging (which are based on a sort of box normalization) it can be 
seen that fi and f j  are orthogonal for ai += aj. We may then choose the normaliza- 

(2.8) 
tion 

where Sij is a Kronecker delta. (Strictly, the f ’S should be labelled by the a’s, 
which form a continuous spectrum, but we use the discrete index for convenience.) 
For a given ai, there is still an infinity of solutions of (2.7), but it is possible to find 
a set of orthogonal functions spanning the subspace of the solutions for fixed ai. 
For this subspace a second index might be desirable, but we shall not indicate it 
explicitly. 

- 
f i f j  = aij, 

We now expand w and 8 in terms of the f ’s: 

4x3  y, 2’ t )  = 2 fi@, y) Wz, t ) ,  8(x, 9, 2’ t )  = c f&’ 9) @i@, 4- (2.9) 
i i 

The horizontal velocity components are then expanded as 

which ensures that the continuity equation is satisfied. From these expansions 
we have omitted terms which describe vertical vorticity ; the corresponding 
expansion for ‘ci7 is of the form of (2.9). 

We may now substitute these expansions into the equations of motion and, 
by multiplying by appropriate f ’s  and their derivatives and taking horizontal 
averages, extract the desired equations for the and Oi. The reductions are 
straightforward and we shall not present them, though a reader who wishes to 
verify the results may find it convenient to note that, in addition to the coupling 
constants, (2.11) C ~ l m  = i s - f d f m ~  

the quantity 

arises in the reductions. The A’s and C’s are related by 

A k l m  = (4 + a,”, - 6)  Cklrn- 

(2.12) 

(2.13) 

Having obtained the expanded equations, me eliminate 6he pressure by taking 
the double curl of the momentum equation. These are familiar reductions, and 
we are led to the following equations : 

= -Ra%@,+B;W,, (2.14) 
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and (2.16) 

where 9 k  = a2/az2 - a;, aklm = u;(u; +a: - a;). (2.17) 

If we now multiply (2.14) by nc2 W,, integrate from z = 0 to x = 1 and sum over 
k, we obtain after some rearrangement 

Likewise, multiplication of (2.15) by @ k  followed by integration and summation 
yields 

These two equations are just the cellular decomposition of the usual power 
integrals of Boussinesq convection (Malkus 1954). Thus, the horizontal mean of 
the kinetic energy per unit mass is 

and we see that (2.18) describes the roles of buoyant work and viscous drag in the 
production of the kinetic energy. The power integrals hold term by term, so that 
energetically, at least, there is no inconsistency introduced by a truncation of the 
expansions. This is to be expected, since we have done little more than a Fourier 
analysis. The planforms are a linear combination of Fourier modes of given 
absolute value of the horizontal wavenumber. Hence if we wish to describe, say, 
a hexagon, we require only one mode, whereas six Fourier modes (three rolls) 
would be needed. The price paid for this advantage is that in (2.15) and (2.16) 
the nonlinear couplings are double sums over all modes rather than the single 
sums which result from a Fourier decomposition. 

As stated in the introduction, we could now proceed by keeping successively 
more terms to see how the approximation develops. Indeed, a t  the time of writing 
we have numerical solutions for up to five modes in a variety of cases, and the 
results are quite complicated. But at this stage i t  appears that the equations 
for one mode may already make a useful mathematical model for convection, 
and we wish now to specialize to that case. Accordingly, we set all the W, and YOk 
to zero except for one pair (Wl, 0,) say. Then the indices are no longer needed, 
and we may write 

9 9 W  = , (2.20) (ft- ) 

aT a a2T -+- (WYO) = - 
at a x  a22 9 

(2.21) 

(2.22) 

which are the single-mode equations to be studied here. The quantity 9 W  is 
proportional to the horizontal vorticity. We have integrated these equations 
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numerically from different initial conditions for various Rayleigh numbers and 
the solution in each case tended to a steady state after long times. This leads us 
to consider here only the steady-state version 

p - q 2 w  = R U ~ ~ + ( C / ~ ) C ~ ( D W ) ( D ~ - - ~ )  w +  W ( D ~ - ~ ~ ) D W ] ,  (2.23) 

( 0 2  - a3) 0 = - p w + C[ 2 WDO + OD W ]  , (2.24) 

p +  wo = N ,  (2.25) 

where B = d/dz and the constant of integration N is the dimensionless total heat 
transport or Nusselt number. The boundary conditions (2.6) for the rigid case 
when combined with (2.3) yield 

w =  D W =  @ = 0 

while (2.6a) gives W = D 2 W = 0  at 

We have also the integral condition 

pax = 

at z = 0,1, (2.26) 

z = O , l .  ( 2 . 2 6 ~ )  

1 .  (2.27) 

In  addition to these formulae, it is convenient to have available the relations 

N = l +  WOdz  j O 1  (2.28) 

and (2.29) 

which are obtained from (2.25) and (2.27). 
We should also note that the range of possible values of C is small for the 

standard cells normally considered: the roll, rectangle and hexagon. Most of 
these planforms can be recovered from a formula of Segel & Stuart (1962) : 

f&, y) = ( w ) ~  2 [A cos ai y + 2 cos - 3tuix 2 C O S W ] ,  2 (2.30) 

where A+OO leads to the roll, A = 0 gives a particular rectangle and A = 1 a 
hexagon. We have for these forms 

C = *A[2/(2 + Az)]*, (2.31) 

which vanishes a t  A = 0, co and reaches a maximum value of 6-b for A = 1. We 
shall regard these values of C as representative, though it is also possible to 
regard C as a measure of ‘eddy effects’ and treat it as a parameter. 

For G = 0, the system (2.23)-(2.25) reduces to what are sometimes called the 
‘ single-cx mean-field equations ’, which have been discussed in detail (Herring 
1963, 1964, 1966; Howard 1965; Roberts 1966; Stewartson 1966; Elder 1969; 
Van der Borght 1971; Murphy 1 9 7 1 ~ ) .  Moreover, the system has been derived 
by Roberts (1966) using a procedure proposed by Glansdorff & Prigogine (1964). 
For C =# 0, Roberts has given some numerical solutions a t  modest R, and Murphy 
(1971 b )  has gone to somewhat higher R for free-free conditions using a truncated 
sine series in z. 
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3. Solutions at small amplitude 
Rayleigh (1916) and others have given solutions of the Boussinesq equations 

for motion of infinitesimal amplitude. When R exceeds a certain critical value R,, 
linear theory predicts exponential growth for planforms in a particular band of 
horizontal wavenumbers (Chandrasekhar 1961, chap. 2). In  the N ,  R plane, steady 
finite amplitude solutions bifurcate from the branch of static solutions at N = 1, 
R = R,. At the point of bifurcation the steady convective solutions have zero 
amplitude and for R near R, they should have small amplitude. Malkus & Veronis 
(1958) used this small amplitude as an expansion parameter in perturbation 
theory to find nonlinear solutions in the neighbourhood of 22,. Their work was 
restricted to the case of stress-free boundaries. The extension to the rigid- 
boundary case, for which (2.26) apply, was made by Schluter, Lortz & Busse 
(1965). In  this section we examine the analogous expansions of (2.23)-(2.25). We 
shall outline the calculation for the rigid boundary conditions (2.26), and then 
quote for comparison the Nusselt number found when the free boundary con- 
ditions are used instead. The point of this exercise is to see how well the solu- 
tions of the single-mode equations, which are derived from the most extreme 
simplification of the horizontal structure of the flow, approximate solutions 
of the full Boussinesq equations at low R. 

We assume that the velocity and the temperature fluctuation have an ampli- 
tude d and write 

To be specific we might consider &,to be the norm'of the velocity. Then (2.23)- 
(2.25) become 

h 

W = d $ ,  @=&a. (3.1) 

( D 2 - ~ z ) 2 $ - R ~ 2 6  = ( d C / a )  [2(1)@)(D2-~') $ + ? ? f D 2 - ~ 2 ) D $ ] ,  (3.2) 

( D 2 - a z ) 6 + p W  = dC[2$D6+6D$],  (3.3) 

P - N  = -dz$3. (3.4) 

Likewise (2.28) and (2.29) are written as 

h 

and the boundary conditions (2.26) apply to ??and 0. It is convenient to combine 
(3.2), (3.3) andI(3.6) into the single equation 

(D2-a2)3$+Ra2$ = ( d C / a )  (D2-a2)  [2(D$)(D2-a2) $+$(D2-aZ)D$]  

A h  + ~ R ~ ~ C ( Z T $ D ~  + ~ D T G )  - d 2 ~ a 2  (1 wo dz - $6) ~ i : .  (3.7) 
0 

We now expand J? , 6, p, N and R in powers of d ,  for example 

I? = $o+dl; i ;+d21G2+.. . ,  
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substitute these expansions into the equations and the boundary conditions, and 
equate separately to zero the coefficients of each power of d. 

We see immediately that the boundary conditions 
A A 

IV,, D$,, O, = o at z = 0,1  (3.8) 

L 3  E [(D2-a2)3+R,,a2]W0 = 0,  

apply at each order. The leading terms of (3.5) and (3.6) give Po = 1 and No = 1, 
while the leading order of (3.7) is 

A 

(3.9) 

which is the equation for marginal stability and yields, in conjunction with the 
boundary conditions, a set of eigznvalues for coo, the lowest of which, %c, occuis 
at a specific value a, of a. Once W, is known, 0, can be obtained, and W, and 0, 
may be written in the form 

(3.10) 

A,, B, and qr are complex constants which depend on the boundary conditions 
used and are given, for example, by Reid & Harris (1958) and Chandrasekhar 
(1961,s 15) for the gravest mode, whose velocity and temperatureAfluctuations 
vankh nowhere other than at z = 0 and 1. It may be shown that 0, is adjoint 
to IF; with respect to L and the boundary conditions (3.8), and that for given R, 
and a the solution, apart from a constant amplitude factor, is unique. 

The higher-order equations derived from (3.7) and (3.2) may be written as 

L@$ = - R,a2Mi + P,, A A 

(3.11) 

0, = (R0a2)-l(02-aZ)2Wn+&,, (3.12) 

where P, and Q, depend on expansion coefficients of W , O and R of all orders up 
to n - 1. The necessary and sufficient condition for the existence of a solution of 
(3.11) subject to (3.8) is that the right-hand side be orthogonal to the adjoint 
function so. Thus 

A h 

A A  

(3.13) 

which determines R,. It can be demonstrated that the integral on the left side 
of this equation cannot be zero. Also it follows from the structure of P, and the 
zero-order solution (3.10) that Pl is of the form 

3 

r , s = l  
P1 = X [PA sinh (qr  + (2 - + % sinh (qr  - qs)  (2 - +)I, 

where the P& are constants. This is an odd function of z - 4, so R, = 0. In view of 
this we can immediately write down a particular integral of (3.11) which is a sum 
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of terms proportional to sinh (pr & qs) (z  - 8). The complementary function and 
the part of & obtained from (3.12) arising directly from the complementary 
function are sums of terms proportional to cosh qr(z - 4) whose coefficients could 
be determined by applying the boundary conditions. Thus each term in P, 
involving the complementary function is an odd function of z - Q and is ortho- 
gonal to 0,; hence to obtain R, it is not necessary to evaluate the complementary 
function. The substitution of the particular integral into (3.13) is quite straight- 
forward and will not be reproduced here. 

To compute the correction to the Nusselt number we expand (3 .5) ,  and obtain 

E, 

Nl = 0, 

We have thus found the deviations of N and R from their marginal values implied 
by a steady motion of amplitude d: 

R = R o + d z R 2 ,  N = I + d 2 N , .  

From these we can eliminate d to obtain 

(3.14) 

After some elementary reductions, this relation can be written in the form 

N -  I = [a1+C2(a2+a,a-'+a4a-2)]-1(R/R,- I), (3.15) 

where the a's are numerical factors depending on a but not on C and a. For 
a = ae = 3.117, 

0 1 ~  = 6.92 x lo-', g, = 9.32 x lo-', CI, = 8.10 x lop2 

and 

For rolls (C = 0) and hexagons (C = 6-4) we find, respectively, 

a4 = 4.01 x 10-l. 

N -  1 = (0*692)-1(R/R,-  I), ( 3 . 1 5 ~ )  

N - 1 = (0.847 + 0*135a-' + 0 * 0 6 6 8 ~ ~ - ~ ) - '  (R/Rc- 1). (3.15 b )  

From the full Boussinesq equations, Schluter et al .  (1965) obtained for these 
planforms 

N -  1 = (0~699-0*00476~-1+0*0083~-2)-1(R/Rc- I) ,  ( 3 . 1 6 ~ )  

N - 1 = (0.894 + 0 . 0 4 9 6 ~ - ~  + 0 * 0 6 7 9 ~ - ~ ) - ~  (RIB,- 1). (3 .16b)  

The most striking aspect of this comparison is the failure of the modal equations 
to produce a Prandtl number dependence for C = 0. For hexagons, the solution 
of the modal equations is adequate for many purposes, and as (3 .15)  is somewhat 
easier to obtain than (3.16),  the simplified system is likely to be useful for more 
complicated problems. 
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If both the boundaries are free the boundary conditions in (2.26) are replaced 
by ( 2 . 2 6 ~ )  and we find by a similar but simpler calculation 

(3.17) 

where R, = (a2 + 7r2)3/a2, 4: = a2 + n27r2. (3.18), (3.19) 

For rolls and hexagons Malkus & Veronis (1958) give explicit results for cr = 00, 

in which case the agreement is excellent. However, in the case of rectangles, 
C = 0 and the present procedure fails to give any dependence of N on cr, in 
contrast to the results of Mdkus & Veronis. 

4. Solutions for large R 
The case of most interest in studying natural convection is that of very large R, 

and we shall examine in this section the predictions of (2.23)-(2.25) for R+m. 
For the case C = 0, asymptotic solutions for R-too have already been found. 
For rigid boundaries Roberts (1966) and Stewartson (1966) found that N varies 
as (Ru21nRa2)* for large R and for suitably restricted wavenumbers a, while 
Howard (1965) found a variation like R4 for free boundaries. In  both cases N is 
of course independent of CT. For C $. 0, the inertial terms have some effect and 
naturally the asymptotic development is more involved. 

The representation of the fluctuation advection terms introduces a vertical 
asymmetry into the solutions, which is already apparent in the finite amplitude 
results of the previous section. However the steady equations (2.23)-(2.25) are 
invariant under the transformation z -+ I - z, W -+ - W ,  0 + - 0, F -+ I - F 
(Roberts 1966). These equations are also invariant under the transformation 
G + - C ,  z-+ 1-2 ,  W-t  W ,  a+@, F-+I--F, but this does not lead to another 
solution. As in 5 3 we only seek solutions for which W and 0 do not vanish other 
than at z = 0 , l  and consider the solution with W ,  0 and C positive. When we 
refer later to aspects of the solution near a particular boundary it should be 
realized that there exists a corresponding solution with the designations 'upper ' 
and 'lower' interchanged. 

The scalings 

To treat the problem of large R we shall use matched asymptotic expansions, for 
which purpose we introduce 

E = (Ra2X~/C)-,, Y = eW, F = ( E N ) - ~ O ,  B = N-1/3 (4.1) 

€ Y ( D 2 - ~ 2 ) 2 Y  = ( C / ~ ) ~ F + D [ Y 2 ( D 2 - ~ 2 ) Y ] } ,  ( 4 4  

(4.3) 

B + Y F  = 1. (4.4) 

Y = D Y = F = O  a t  z = O , I  (4.5) 

into (2.23)-(2.25) and multiply (2.23) and (2.24) respectively by Y and F to 
obtain 

E~F(D' - a2) P = - B F Y  + eCD(F2Y), 

The rigid boundary conditions (2.26) become 
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and we have from (2.27) 

We now study the nature of the solutions as E -+ 0. Before proceeding to the outer 
expansions, we shall anticipate here the scaling needed for the boundary layers. 
Near the lower boundary we let 

(4.7) 
= t.4h-45, Y = &hi$, F = e-~&h-*f, 

B = b, h = $ h e - l .  

The boundary-layer equations are then 

ff" + bf$ - C(f ' $ ) I  = 0, 

b + $ f - l =  0, 
(4.9) 

(4.10) 

where a prime denotes differentiation with respect to the argument (here 5)  and 
we have neglected terms which are O(a2sA-*). 

Near the upper boundary we set 

I -Z = "7, Y = s", F = d g ,  B = b, (4.11) 

so that the equations for the upper boundary layer are 

(4.12) 

(4.13) 

(4.14) 

The interior solution 

We need first to find the appropriate asymptotic sequence for the solution away 
from the boundaries. The leading term Yo can be inferred from (4.1)-(4.3) by 
letting E +  0. From (4.3) we find BOYo F, = 0, which suggests the choice B, = 0. 
Then (4.4) implies that Y,k;b = 1. We can then neglect the left-hand side of (4.2) 
and integrate once to obtain 

Y i ( D 2  - a2) Yo = z ,  - z ,  (4.15) 

where zo is an integration constant. An equation of the same form can be obtained 
by integrating (4.2) from 0 to z and making the identification 

(4.16) 

Since B, is zero, T is constant to leading order in the interior; the integral in 
(4.16) is also sensibly constant in the interior since its main contribution comes 
from the boundary layer. Hence, expression (4.16) gives the constant 2,. Now we 
expect, and shall verify below, that N-l is proportional to the boundary-layer 
thickness &I-&, while on introducing the scaled variables (4.7) we find that the 

45 F L M  68 
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integral in (4.16) is O(ehh8). Thus zo = O(e%lQ), and we can neglect it in (4.15). 
However, these estimates give us some indication of the kind of higher-order 
terms to be expected in the development of Y. 

The details of this asymptotic development for Y are given in appendix A. 
To illustrate the calculation we simply consider here the leading term Yo, which 
is obtained from (4.15) by neglecting zo. This is adequate for obtaining the leading 
term in the dependence of N on R. Near z = 0, (4.15) admits solutions which 
vanish for z = 0 which are of the form 

Yo = z (4.17) 

while near z = 1, the solution which vanishes a t  x = 1 is 

Yo = ($)*( 1 -2)f [1+ K2( 1 - z)f ++( 1 - 2) + ...I + .. . , (4.18) 

where Kl and K 2  are constants. Though (4.17) and (4.18) give the behaviour at 
the edges of the interior, we have no guarantee that the two limiting behaviours 
correspond to one solution and we need reassurance on this point. For a 1 we 
can apply matched asymptotic expansions to (4.15) and see that indeed all is well. 
This procedure also determines K,  and K,. However, as we have no explicit need 
here for these results, we defer that calculation to appendix B. 

An interesting feature of this approximation for the interior solution is that it 
predicts a bump in the mean temperature profile near one boundary (here the 
lower one). To see this we recall that FoYo = 1 and find from (4.3) that 

B = sCDF0+ .... (4.19) 

Since OFo = D(Yi1) we see from (4.17) that near z = 0 

B N - s C Z - ~ [ ~  In (K,/z) + ...I-* (4.20) 

while near z = I, B > 0. This is just the interior part; the actuaI value of B must 
be brought to unity at both boundaries with a boundary-layer solution. Thus T' 
must have a bump near the lower boundary, but does not have one near the 
upper boundary. (The reverse is true for C < 0.) 

We now express the interior solution in the boundary-layer variables defined 
by (4.7) and (4.11). From (4.17) we find that, near z = 0, Yo = e*hgc+O(lnh/h). 
In fact the higher-order terms in the outer asymptotic sequence contribute 
terms to this leading order. The calculation in appendix A gives us 

Y = e*h*(c-A,ln[-lo+ ...)+ O(e*h-*) 
near [ = 0, whence 

(4.21) 

( A$?[+++ ... +O(€-th-t), (4.22) 

where A ,  and lo are constants. Likewise, near z = 1, the interior solution 
expressed in the appropriate boundary-layer variables is 

(4.23) 

(4.24) 

1 F = e t h - q - 1  1 +- 

Y = R (g)Q 73 [1+ (#)* K,q]-l - ($)* (4c~/15C) 7-5 + . . .] + O(e*), 

F = E-% ($)*,-q[l- ($)a K37-l + g($)+(20-/5C - C)7-% + . . .] + O(l ) ,  

where K,  is an arbitrary constant. 
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Boundary-layer solutions 

Near the bottom boundary layer we introduce the scalings (4.7) and obtain 
(4.8)-(4.10). We consider here only the matching of the leading terms, for which 
purpose (4.8) may be approximated as 

$ p v  - (C/a) ($Z$” ) ’  = 0. (4.25) 

This is to be solved subject to the conditions 

$(O) = P ( 0 )  = 0, @ 6-AlInc-b as C-tco. (4.26) 

Integration yields 
$’”- (C/Cr) [$V + & ( $ ’ Z -  I)] = 0. 

With the substitutions 

(4.27) 

we obtain p-X--- ;; ;[($)2-1] = 0, 
d3X (4.29) 

which is free of parameters. The boundary conditions are now 

x (0 )  = [dX/d<I[=O = 0, x % - A U - t o  as <+a, (4.30) 

where A = (C/4*Al9 t o  = [&A, 1n (cr/C) + COI (C/CrP (4.31) 

are as yet unknown. 
Equation (4.40) is of the Falkner-Skan type and is best solved numerically. 

We have carried out two independent numerical solutions in collaboration with 
Dr K.Grossman and they yield A = 0-335, to = 1.19 and d2x/dt2 = 0-729 a t  
< = 0. The function x is exhibited in figure 1. 

The solution in the lower boundary layer is completed by solving (4.9), which 
can be rewritten as 

f” -2c$ f ’ - (p+C@’) f  = -$, (4.32) 

subject to f ( 0 )  = 0, f N [-l as [+a. (4.33) 

.w/+ 5)  = fa = (4Yf (0. 
f = (- crZ/C2) (1 -xf)x + cr(2xfll +XY), 

For purposes of numerical solution it is convenient to introduce 

(4.34) 

(4.35) Then 

where a prime indicates differentiation with respect to the argument (here <). 
Since we have x, a function of 5 alone, it is straightforward to solve (4.46) numeri- 
cally for f for various values cr and c. Some sample solutions for f are shown in 
figure 1, for C = 6-4 = 0.408 and cr = 

The matching to the top boundary layer proceeds in a similar fashion and leads 
to K,  = - 0*927(a/C)g. We need not repeat the discussion, but we should mention 
that the numerical solutions in both cases (upper and lower boundary) require 
some care. 

1, lo2 and lo4. 

45-2 
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102 

FIGURE 1. The lower boundary-layer functionsf and x from (4.35) and (4.29) are displayed 
over a representative interval of the independent variable E .  The functions f are for 
C = 0.408 (hexagonal planform), and for the Prandtl numbers CT = 10-2,1,102 and lo4. The 
function x in these numerical solutions is independent of G and u, and has the limiting 
form x oc 6 2  as 6 +- 0. 

The Nusselt numbes 

We may evaluate N from (4.6) by separating the integral into the contributions 
from the interior and the two boundary layers: 

the term O(E)  coming from the interior [see (4.19)]. The quantity 

(4.36) 

(4.37) 

can be evaluated, for different w and C ,  from the boundary-layer solutions. In  
table 1 we give values of k for a large range of cr and for a few values of C. From 
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a\C 

1 0 4  
105 

103 
102 
10 
1 

10-1 
10-2 

10-4 
10-6 

10-3 

0.408 

12.64 
8-63 
5.90 
4.05 
2-82 
2.01 
1.53 
1.28 
1.17 
1.13 
1.1 1 

0.300 

13.15 
8.97 
6.14 
4.21 
2.92 
2.07 
1.56 
1.28 
1-16 
1.11 
1-10 

0.200 

13.96 
9.52 
6.51 
4.46 
3.09 
2.18 
1.61 
1.30 
1.16 
1.11 
1.09 

0.100 

15.58 
10.63 
7.26 
4.97 
3.43 
2.40 
1.74, 
1.37 
1.19 
1.11 
1.08 

TABLE 1. Dependence of k, the integral expression (4.37), upon C and LT. The values of k 
may be used in evaluating the Nusselt number N in (4.38). The values of k for a free 
boundary, given by (4.41), a.t the above C values ara 1.10, 1.09, 1.07 and 1.06 

the analysis we know that k depends on C and cr/C but not on CT alone. We see 
from table 1 that, for large u/C, k varies approximately like (g/C)Q, with a 
coefficient that varies weakly with C and is about 1.60 a t  C = 0.408. For very 
small CT, k is insensitive to either u or C. 

We may now refer to dehition (4.1) to establish that 

where 

(4.38) 

If the leading term from the upper boundary layer is taken into account, the 
factor k in (4.38) and in 9 must be replaced by 

k + B?-*%(In8)s%k’ + . . . , 
where 

while if we include the next term from the lower boundary layer the whole 
formula must be multiplied by 1 -& (lnlnB?/lnW) + .. ., at least when C, G and 
a are of order unity. 

Since B is the gradient of p, we see from (4.36) that as R+m all of the drop 
in occurs in the lower boundary layer. Thus a t  sufficiently large R the bump 
in implied by (4.19) causes F to lie slightly outside the range defined by the 
boundary conditions. Also, to leading order the Nusselt number is independent 
of whether the upper boundary is rigid or free. 

Other parameter ranges 

In  obtaining (4.38) we have treated a, C and CT/C as O( 1), though these restrictions 
can be relaxed somewhat without loss of qualitative information. For example, 
when G << 1 (C being fixed and non-zero) k 21 1.1,  which shows that to within the 
present accuracy N depends on RCT but not on R or CT separately (a being fixed). 
However, the explicit dependence of iV on RCT indicated by (4.38) holds only for 
Ro-9 I. 
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When aR/C is small a totally different scaling of (2.23)-(2.25) is necessary 
because now most of the heat is transported by conduction. There are no thermal 
boundary layers and although W depends on which of the sets of boundary 
conditions (2.26) or ( 2 . 2 6 ~ )  is imposed, 0 and N do not. In  particular, 

N N 1 +R(rR/C)2, (4.39) 

where A is a function of a alone, when R is large. It was found by numerical 
integration of the interior equations that A has a single maximum A, = 2.496 x 

For large r / C  it  is not hard to show that there is virtually no change in the 
results and that the form of (4.38) remains valid as long as a/C < (Ra2)8. When 
a becomes very large compared with C, N becomes essentially independent of a; 
this is true also when C+ 0. In  fact, as C tends to zero, the form of the dependence 
of N on Ra2 is just that found by Stewartson (1966) and Roberts (1966). How- 
ever, the asymptotic analysis presented here is not valid when C < a(Ra2)-%, 
since in that limit a different balance of terms holds. Viscous forces balance 
buoyancy both in the interior and in the boundary layers, and the matching is 
quite different. Nevertheless, the Rayleigh number dependence when C = 0 is the 
same as expression (4.38), though the coefficient k is different from that obtained 
simply by letting C-t 0 in (4.37). There are also differences in logarithmic terms, 
but if anything, the similarities rather than the differences between the results 
so differently obtained are remarkable. 

The dependence of N on a implied by (4.38) is also of interest and implies a 
general increase in N with a in the asymptotic range considered here. This clearly 
must break down at large enough a since we know that, for large R, N = 1 when 
a 2 Rt. Moreover, the small amplitude studies are applicable sufficiently near to 
the marginally stable solutions, even at large R, and we find no subcritical solu- 
tions. Thus, (4.38) must break down before a increases to R*-but where!' 

From our discussion of the interior equation for large a (appendix B) we see 
that boundary layers of thickness a-l arise. When a = O(R&), (4.1) and (4.38) 
imply that ei-'s(lne-l)A- = O(a-l), which is larger than the thicknesses of the 
boundary layers already considered. Hence no significant change in the structure 
of the viscous boundary layer results, though In K, and K ,  in (4.17) and (4.18) are 
no longer of order unity (cf. appendix B); the order of the asymptotic sequence 
derived in appendix A and the subsequent matching are modified. Furthermore, 
when a 2 OIRisi(ln R)>%] equation (4.15) is vaIid only in an intermediate boundary 
layer of thickness a-YR% (In R)h ,  which is always greater than a-l. In  the true 
interior the viscous and buoyancy forces balance and Y is asymptotically con- 
stant. The temperature is no longer asymptotically constant, and decreases 
linearly with x .  Consequently, the interior contributes in leading order to the 
integral for N-l in (4.36), as it does when C = 0 (cf. Stewartson 1966), the amount 
it contributes being a6e3a/C. The intermediate boundary layers do not contribute 
in leading order and we find that formula (4.38) for N should be multiplied by 
(1 - a4/R) [( 1 - 3v)/( 1 + 2v)]% and 92 should be replaced by (1 - a4/R) W, where 
v = (lna/lnR). This gives amax II (&R)t. The additional adjustments that are 
made when higher-order terms in the expansion are taken into account still apply 

which occurs at  a = 2.370. 
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provided that a. < R&-(ln R)&, except that the factor & must be multiplied by 
( 1  -+ 2u)/( 1 - 3u); for larger a the intermediate boundary layers near the lower 
boundary also contribute to the correction to k.  

Free boundaries 

I n  many theoretical studies of convection it is assumed for mathematical con- 
venience that at  the boundaries there are no tangential stresses, and this is 
commonly referred to as the free boundary condition, even though the boundaries 
are not permitted to deform. For 'free' boundaries the dynamic boundary condi- 
tions are (2.26 a ) .  When C = 0, these conditions result in a qualitatively different 
dependence of N on R than do the rigid conditions. Howard (1965)  finds that 
for free boundaries N N Rg when R -+ co and C = 0, and that, a t  fixed R, N is 
maximum for a = O(1). [For C = 0, N is maximum a t  a = O(R4) with rigid 
boundaries (Roberts 1966; Stewartson 1966).]  For purposes of comparison with 
these studies we sketch here asymptotic results for free boundaries when C + 0. 

The ordering of the terms in the body of the fluid (i.e., the asymptotic sequence) 
is the same for the free boundary case as for the rigid. Thus the analysis is the 
same as above up to the point where (4 .27)  must be solved. But now the conditions 
on + are 

$(O) = $"(O) = 0, $ N (-A~ln[-[o as [-+coo. (4.40) 

This time the solution is $ = ( with A ,  = 0 and c,, = 0. The completion of this 
analysis is outlined in appendix C, where it is found that (4 .38)  holds but now 

k = 2 - 4 [ r ( $ ) ] 2 ( 1  +c2)* = i - o 6 2 ( i  +c2)*, (4 .41)  

which is independent of v. This means that, when c = O(l) ,  N depends on v and 
R only through the combination Rv as in the case with rigid boundaries at  low v. 
This behaviour does not persist for very large v, and the analysis shows that 
modifications are expected when v is of order C(Ra2)%. The general treatment of 
the problem is difficult and we have simply examined the limit v 9 C(Ra2)Q. 

In  this limit the inertial term in the momentum equation is negligible and the 
interior equation for Y is the same as when C = 0. On the other hand, the 
boundary-layer equations are the same as for C + 0 and are solved in appendix C. 
The resulting Nusselt number is 

N [ ~ d A 2 / ( 2 k ) * ] + ,  (4 .42 )  

where A is the first derivative of the interior variable Y at z = 0. It was deter- 
mined by Howard (1965)  in his C = 0 analysis, and can be approximated very 

(4 .43)  

The function k is given by (4.41) and reduces to that found by Howard when 
C = 0. It should be pointed out that for real fluids the R* behaviour does not 
persist to extremely large R;  for fixed v, however large, the condition 5 9 C(Ra2)+ 
is not satisfied when R is large enough, and then N K (RIn R)Q as R-tco. 
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The dependence of N on a when C $. 0 and a < C(Ra2)P is the same as when 
rigid boundary conditions are applied: N attains its maximum at a = O(@) when 
aR $ 1, and at  a = 2.37 when aR is small. When a >> C(Ra2)Q the dependence 
on a is the same as when C = 0 and once again N attains its maximum, propor- 
tional to R5, when a = O( 1) .  

We note that in the lower boundary layer the vertical velocity amplitude 
varies linearly with z ,  whatever the value of Q. Thus the horizontal vorticity, 
which is proportional to (D2 - a2) Y,  is small. This is not so in the upper boundary 
layer, however, where strong concentrations of vorticity occur, even though the 
stress at z = 1 is zero. 

Finally, we observe that,, as R+CO with URIC < 1, (4.39) holds for free 
boundaries as well as rigid. 

5. Discussion 
The point of the present work has been to explore the possibility of describing 

nonlinear convection by treating its horizontal structure inaccurately while 
paying careful attention to its vertical structure. The way of doing this here has 
been to expand the horizontal variation of flow variables in terms of the planform 
functions of linear theory and then to truncate these expansions. The resulting 
equations differ from the mean-field equations by including a representation of 
the inertial terms. In  this paper we have considered solutions of the single-mode 
equations (2.20)-( 2.22) resulting from the severest truncation. 

The case of mildly supercritical R treated in $ 3 by finite amplitude expansions 
is principally of interest for comparison with known solutions of the full equa- 
tions. We found that the single-mode solutions compare well with the corre- 
sponding solutions of the full equations for the case of hexagons. For rolls the 
agreement with the full solutions is good only for very large Prandtl number; 
this is just another manifestation of the failure of the mean-field equations (C = 0)  
to give a description of the dependence on Prandtl number of heat transport. 
Since C = 0 for rectangles as well, the single-mode representation fails in the same 
respect for these planforms. Thus, for moderate Rayleigh numbers accuracy is 
restricted to planforms for which C + 0, and otherwise to (+ >> 1. But in these 
cases reasonably good results can be obtained rather easily. 

The asymptotic solutions of $ 4  in the limit R+co display a dependence of 
N - 1 on R and Q, which we summarize in table 2 for various cases. The behaviour 
at  very large a, in the last column, results when the viscous terms dominate the 
inertial terms in the interior; in that case, for both rigid and free boundaries, the 
asymptotic forms are similar to those obtained from the single-mode mean-field 
approximation. The difference between the second and third columns arises from 
the different relative thicknesses of the vortioity and temperature boundary 
layers near the lower rigid boundary; there is no vorticity layer near a lower free 
boundary. (It should be recalled that the designations ‘upper’ and ‘lower’ refer 
to our arbitrary choice of solution with W ,  0 and C positive; the designations are 
reversed when the sign of the product C W is changed.) When Q < C,  as in the first 
and second columns, any vorticity boundary layer near the lower boundary is 
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u < CR-I CR-I < u < C 
Rigid boundaries ( U R ) ~  (uRln uR)* (RlnR)i (R1nR)B 

C < u < C(Ra2)Q u & C(Ra2)3 

Free boundaries (uRl2 ( u R ~ ~ u R ) )  (uRlnuR)) R* 

TABLE 2. Form of the asymptotic dependence of N - I on R and u for R -+ 00, for various 
ranges of u. Although the rows are labelled according to the conditions on both boundaries, 
it is only the ‘lower’ boundary condition that determines the Nusselt number at leading 
order. 

so thin compared with the thermal layer that the heat flux is independent of the 
boundary conditions on the stress. This is evident from table 1, where ode can see 
that the integral k for a rigid boundary approaches the values for a free boundary 
as cr decreases. Further, when cr < CR-1 thermal boundary layers cease to exist 
and the Nusselt number differs from unity by just a small amount; its value 
depends only on the solution in the interior, which is independent of the vorticity 
boundary layers. 

The dependence of N upon a is not shown in table 2 since analytical functional 
forms are not available for all the cases. However, N appears to possess a single 
maximum N, with respect to a in each case. This maximum occurs when a = O( 1) 
for free boundaries when cr % C(Ra2)%, and also for both rigid and free boundaries 
when cr < CR-I. In  all other cases it occurs when a = O(Rf). 

The dependence of N on cr indicated in the first row of table 2 is of the kind 
hoped for in a qualitatively acceptable model. For cr > 1 experiments with rigid 
boundaries show little or no dependence of N on cr. However, as cr decreases 
through unity a slight decrease of N is found experimentally (Rossby 1969). The 
experiments unfortunately do not give us any guide as to the cr dependence for 
very small cr, but there is weak evidence from studies of stellar convection. 
Theoretical models of stars are computed on the assumption that for the very 
small Prandtl numbers of stellar material convective heat transfer does not 
depend on viscosity, and the models rationalize the observational data quite 
tolerably. The results presented here indicate that, for very small cr, N depends 
only on Rcr, which accords very well with the astronomers’ prejudices. 

In  this discussion of (T dependence we considered the wavenumber a to be 
fixed, while in fact we are at liberty to make it a function of R and cr. Unfortu- 
nately experimental data are too sparse for us to draw any firm conclusions con- 
cerning this function. However we recall that, at the highest R, N varies as R to 
a power which lies between 0.26 and 0.33 [see Rossby (1969) and Chu & Goldstein 
(1973) for summaries]. For rigid boundaries, if we choose a = O(Rf), we find that 
N cc R0‘30(ln R)0.20, which certainly mimics the experimental data. 

Unfortunately no experimental work has been done at the very large values 
of R at which our asymptotic analysis is valid, so we are able to compare our 
results only with other theoretical predictions such as the dimensional analysis 
that predicts N cc R* as R+ co. This behaviour cannot be attained by the single- 
mode representation since a is at most Rf. But it appears to be a property of the 
multi-mode representation (Spiegel1971), at least when the modes do not interact 
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directly via the fluctuation advection terms, and such a behaviour has also been 
obtained by Chan (1971), who computed the maximum value of N permitted by 
the mean-field equations. Chan showed also that this maximum is an upper 
bound to the N permitted by the full Boussinesq equations with (T = co. How- 
ever, it is not entirely clear that the R) law applies to real fluids. Kraichnan’s 
(1961) analysis of convection at extremely high R predicts N cc [rR(ln R)-3]$ 
when (T is small (but (TR is large) and N cc c-f[R(ln R)-3]i when r is moderate. 
This steeper dependence on R arises from the increasing enhancement of the heat 
transport by boundary-layer turbulence as R increases. We do not know whether 
this phenomenon would be exhibited by our representation with many inter- 
acting modes, nor whether it even exists in real convection. But Kraichnan’s 
argument is not implausible, and has not been contradicted by the Nusselt 
number maximization studies of Howard (1963) and Busse (1969). 

Evidently, at  very large R these single-mode equations are a very incomplete 
representation, and some of the properties seem unrealistic. For example, at high 
enough R, a t  least when a and (T are O ( l ) ,  the mean temperature field extends 
outside the range defined by the boundary conditions, as we noted above. But the 
purpose of both the mean-field equations and these modal equations is to describe 
the nonlinearities of convection in a tractable way. They may be viewed either 
as mathematical models for convection at high R, or alternatively as approximate 
representations of some aspects of convection at low R, where the scales of motion 
are fairly restricted. 

To determine to what extent the single-mode equatious may be useful at  
high R, more details of the experimental data must be compared with the 
theoretical predictions. Such details include the distributions of temperature and 
velocity, and the scales of motion which appear to dominate the heat transport. 
The asymptotic solutions presented here are valid only at values of R much 
greater than those realized in the laboratory, and detailed comparisons are 
deferred to a subsequent paper in which numerical solutions of the single-mode 
equations in the experimental range of R will be presented. 
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boundary-layer equations and to L. N. Howard and J.-P. Zahn for some very 
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Appendix A. The outer asymptotic sequence 
The discussion centring on (4.15) and (4.16) gives some idea of the first two 

terms of the appropriate outer sequence for the system (4.2)-(4.4). Further 
manipulations lead us to try an expansion of the form 

Y(Z, E )  = + &t[ir,, + A-W,, + A-~Y,, + ...I 
+ dh-hln h[Yzo + h-WP,, + . . .] + . . . 
+ (€*A+)2 [Y2, 4- . . .] + SY, + . . . , (A 1) 

with similar expansions for F and B. In (A 1) the various Y’s on the right-hand 
side are independent of s and A. 

The zeroth-order terms in this expansion lead to (4.15) with the choice zo = 0 
and the behaviour of Yo near the boundaries expressed in (4.17) and (4.18). 

We find next that the Yln (n = 0,1 ,2 ,  ...) satisfy 

Y:(D2-a2)Yln-2zYln = A n y o ,  (A 2 )  

where the A ,  are arbitrary constants and in fact are the coefficients of the higher- 
order terms of an expansion of (4.16). Near 2 = 0 we see from (4.17) that (A2) 
becomes, for a = O(l),  

where 

Near z = 0 we may use the approximation 

22h3(D2 - a2) Yln - 2Yl, = A,h, 

h 21 [3 In 2-1 - 2 In (3  In z-l)]+. 
(A 3) 

(A 4) 

D2h = (zh)-2, (A 5) 

YPln = -A,h+B,h2, (A 6) 

so that (A 3) has the approximate solutions 

where the B, are arbitrary constants. 

asymptotic sequence for ‘P in the neighbourhood of z = 0 is 
Similar considerations can be applied at the higher orders and the outer 

Y = zh + €9ABh2(Bl + A-fB, + k + B 3  + . . .) 
-dAth(A, +A-fA, +A-+A3 + . . .) 
+ sth-t In ( A )  h2(Bz, + A-+B12 + . . .) 
- s&-t In ( A )  h(Azl + A--SA,, + . . .) - eA+A:/2zh2 + . . . 
+ E(+C + +)/zh + . . . . (A 7) 

Likewise, near z = 1, the asymptotic sequence can be written as 

Y = (1  - Z0)+ (;)f (1 - Z ) O [ l +  K,( 1 - z)Q + &(I -zo)-l( 1 - 2 )  + . . .] 
+ &K3( 1 - z)-* + . .. + e(4+5C) (1 - z)-l+ ... . (A 8) 

1 1 
zh z2h 

P = -+-teitAS- [A,-B,h+A-q44,-B,h)+ . . . I+. . .  , 
and near z = 1 

P = (1 - zo)-4. ($)+ (1 - 2)-3 [I  - K,( I - z)% + . . .] + . . . . (A 10) 
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To facilitate the matching to the boundary-layer solution we express the 
interior solution in boundary-layer variables. Near z = 0, with z = dh-&[, we 
find 

Y = sth*B,( 1 - h-1 In h - 2h-1 In 5)  
+e~h~[(B,-A,)-h-lln(h) (B2- &A,)-h-1(2B,-A,)lnf;] 

+e*h~[(B3-A,)-h-11n(h) (B3-&A2)-h-1(2B3-AA2)lnf;]+ ... 
+ sthi In ( A )  Bll( 1 - h-lln h - 2h-lln f;) + . . . 
+ dh*[(B,- A,+ f;) - h-lln ( A )  (B, - $A4- if;) 
-h-l(2A5 - A,  - f;) In 51 + &h-* In ( A )  [(B12-An) + . . .] + . . . . (A 11) 

The leading term in this expansion is constant and O(~*ht), for 5 fixed. We are 
unable to match such a term in the boundary layer, where for large 5 the leading 
term varies like f;. We therefore must choose B, = 0, B, = A,, B3 = A,, B, = A,, 
A, - B, = constant = C0 (say) and B,, = +Al. This procedure leaves two arbitrary 
constants, A, and co, in the leading terms. For the higher-order terms a similar 
sequential cancelIation is needed, but we consider here the matching of only the 
leading-order terms. We then find, near z = 0, that 

Y = dh+(f;- A, In 6- co + . . .) + O(s*h-*) (A 12) 

(A 131 and 

while near z = 1, with T,I = ef(1 - z ) ,  we find 

p = E-th-q-1 ( 1 +1-- A rf; !)+ ..., 

Y = €~[(B),r"+3r-S-(4~/15C)r-1+ . . .I+ O(&) (A 14) 
and P = ~ - Q ( ~ ) ) r - ~ [ l - ( ( g ) g K ~ ~ , 1 - ~ + ( ~ ) 3 ( 4 0 - 1 1 5 C ) ~ - % +  ...I+ O(1). (A 15) 

These expressions provide the matching conditions to be applied to the boundary- 
layer solutions. 

Appendix B. Solution of (4.15) for large a 
The leading term in the outer asymptotic sequence satisfies (4.15) with zo = 0, 

YZ(D2- a2) Yo = - 2, 

where D = d/dz. We need to know how Yo behaves near the boundaries ( z  = 0, l),  
and in the text we have assumed that Yo vanishes on both boundaries. These 
conditions lead to a successful matching. Here we simply wish to verify the 
behaviour indicated in (4.17) and (4.28) and shall do so for a $ 1. 

For large a the asymptotic solution of (4.15) away from the boundaries 
( z  = 0, 1) is 

1 Yo = (;)+[1-5z-z+... 2 . 

To discuss the behaviour of the solutions near z = 1, we introduce new variables : 

1-2  = a-4, yo = a-fo. (B 2) 
W(d2/dr2- 1) 0 + 1 = a-4. (B 3) Now (4.15) becomes 
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If we introduce the expansion 
Q, = Q,o+a-lQ,l+... 

into (B 3) we readily obtain the equation for Q0. From (B 1) we see that @,-+ 1 as 
r -+ 00 and that the appropriate solution for the Q0 equation is 

r = 2 [ktanh-l ( S ) * - t a n h - l  (&)*I. 
Near r = 0, we expect Q0 z 0 and we can’invert (B 5) to  yield 

Q0 = 2( &)+ [I -I( $r)3 + . . .I. 
On expressing this in terms of z we find that, near x = 1, 

Yo = (3)t (1 - z)3 [1 - &(f )+U+ (1 - z)P + . . .], 
which agrees with (4.18) and establishes the value of K ,  for a > 1. 

Near z = 0 we scale as follows: 

2 = a-ls, Yo = a-1X. 

With these scaled variables we can rewrite (B 1) as 

X = sf(l-2/27s3+ ...) for s-+co. 

The ‘boundary layer ’ equation is 

X2(d2/ds2 - 1) X + s = 0, 

which is unfortunately not much simpler than (4.15). However, we can verify 
that as s -+ m it admits solutions which match to (B 9). Moreover, as s -+ 0 it has 
a solution which when expressed in z goes to zero like 

Yo = z(3 In 2-1- 2 In In 2-1 - 3 In a + . . .)*. (B 11) 

This agrees with (4.17) if we set Kl = a-l. Thus we see that the constants 
K, and K ,  are determined from the interior equation when the conditions 
Yo(()) = Yo( 1) = 0 are applied. To obtain better values of Kl and K ,  for a = O( 1) 
we would need to solve (3.15) numerically; however, we have no real need of 
such precision. 

Appendix C. The free boundary layer 

$ 2: g. Thus (4.32) becomes 
As indicated in the text, the solution of (4.27) with the conditions (4.40) is 

7 -  2CCf’- (C+ C”)f = - 6 (C 1) 

and we require f (0) = 0 and f - C;-l as C-+ m. This equation is very similar to the 
one which arises in the case C = 0 treated by Howard (1965) and it is not hard to 
extend his treatment and find the solution in integral form. This is 

where 
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The evaluation of N proceeds as before and we obtain (4.38), but this time 

D. 0. Cough, E .  A .  Xpiegel and J .  Toomre 

dt). 

With some standard manipulations this can be cast into lengthy but known 
integrals, and we are led to (4.41). 
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